Whitwell Avenue Drainage Investigation and Flooding Analysis

FUSS&O'NEILL

Second Public Informational Meeting December 7, 2016 Project No. 16-040 City of Newport Department of Utilities

Agenda

- Project and Watershed Area Overview
- Model Setup and Calibration
- Existing Conditions Flooding
- Alternatives Considered
- Model Results for Alternatives
- Conclusions

Whitwell Avenue Drainage Area

- 262 acre drainage area to Moat
- Completely built-out
- Poorly drained soils throughout the watershed
 - Little water infiltrates, mostly runs off
- Very challenging conditions

Existing Drainage System

- 36" trunk storm sewer through neighborhood
 - Drains runoff from neighborhoods to north and west.
- 48" trunk storm sewer under Eustis Ave to the Moat

Low Area Between Whitwell and Eustis

Source: Google Earth

Studied Storm Events

- Studied impacts from two events
 - One real storm, August 15, 2012
 - One theoretical storm, used for design of new construction

Storm	Total Rainfall Depth (in)	Duration (hr)	Peak Intensity (in/hr)
August 15, 2012	1.78	4	1.17
10-Year Storm Event	5.02	24	1.26

Flooding on Hazard Avenue, August 15, 2012

Flooding on Whitwell Avenue, August 15, 2012₆

Hydrology & Hydraulics Model Approach

- EPA SWMM (Stormwater Management Model)
 - Rainfall/runoff model for modeling closed conduit systems, with 2D component for surface flooding
- 15 Catchments; 26 Conduits; 26 Nodes (Manholes); 2 Outfalls

7

Watershed Hydrology

	Peak Flow into the Moat (Cubic Feet per Second)	Volume of Runoff from the Watershed (Gallons)
August 15, 2012 Storm	160	6.0 million
10-Year Storm	189	14.6 million

- Total runoff volume for August 15, 2012 storm
 - Generated outside the project area = 5.3 million gallons
 - Generated from within the project area = 0.7 million gallons

Existing Conditions – Videos

August 15, 2012 Storm

10 Year Storm

Existing Conditions – Peak Flows

August 15, 2012 Storm

10 Year Storm

Model Calibration

 Model calibration using known flooding from August 15, 2012

Whitwell Avenue and Watson Street

- ~2-3 inches of flooding in photograph
- Average modeled flooding depth is 3 inches

Hazard Street

- ~10 inches of flooding in photograph
- Maximum modeled flooding depth is 13 inches

Modeled Three Viable Alternatives

- Increase Trunk Storm Sewer from 36-inch to 48-inch
- 2. Increase Pipe Sizes & Connect Watson Street with Kay Street
- 3. Install Subsurface Storage System

Other Alternatives Considered

- Green Infrastructure
 - Relies on well-drained soils to disconnect runoff from storm drains
 - Poor soils in watershed make this inefficient
 - Requires about 37 acres of space to reduce flooding
- Storage in Braga Field
 - Too low, inundated by Moat during floods

1. Increase Pipe Sizes

- Replace 2,500 linear feet of 36-inch pipe with 48inch pipe
 - 80% increase in capacity
- Replace 900 linear feet of 12- and 18-inch pipe with 24-inch pipe
 - 150% increase in capacity

2. Connect Watson Street with Kay Street

- 830 linear feet of new 36inch storm drain
 - Redirect Whitwell Ave pipes to Whitwell Place and Kay Street
 - Alternative diverts overloaded Whitwell Avenue drain away from Robinson Street and Wilbur Avenue

2. Connect Watson Street with Kay Street

- Initial analysis determined that this alternative alone would increase flooding on Kay Street
 - Not Acceptable
 - Modeled Depth of Water above Rim

	Existing Conditions		Connect Watson Street with Kay Street Only	
	August 15, 2012 Storm	10-Year Storm	August 15, 2012 Storm	10-Year Storm
Whitwell Place & Kay Street			0.35 feet	1.00 feet
Kay St & Champlin Place North			0.33 feet	0.82 feet

• Evaluated with Alternative 1 to avoid increasing flooding on other streets

3. Install Subsurface Storage System

- 2,900 linear feet of subsurface storage system
- Replace 2,900 linear feet of existing 36" pipe below the subsurface storage system

3. Install Subsurface Storage System

• Typical Section

• Typical Profile

Modeling Results – Increase Pipe Sizes

August 15, 2012 Storm-Flooding Eliminated

Existing Conditions

Alternative 1: Increase Pipe Sizes

Modeling Results – Increase Pipe Sizes

10 Year Storm-Substantial Flooding in Lower Areas

Existing Conditions

Alternative 1: Increase Pipe Sizes

Modeling Results - Connect Watson Street with Kay Street

August 15, 2012 Storm-Flooding Eliminated

Existing Conditions

Alternative 2: Increase Pipe Sizes & Connect Watson St with Kay St

Modeling Results - Connect Watson Street with Kay Street

10 Year Storm-Less Flooding than Alternative 1

Existing Conditions

Alternative 2: Increase Pipe Sizes & Connect Watson St with Kay St

Modeling Results - Install Subsurface Storage System

August 15, 2012 Storm-Flooding Eliminated

Existing Conditions

Alternative 3: Subsurface Storage

Modeling Results - Install Subsurface Storage System

10 Year Storm-Marginal Improvement

Existing Conditions

Alternative 3: Subsurface Storage

- All manage floods to scale of August 15, 2012
- Alternative 1-Increase Pipe Sizes
 - Major concern is that it increases flows downstream
 - 160 cfs to 189 cfs (18% increase during August 15, 2012)
 - Increase risk of downstream flooding
- Alternative 2-Increase Pipe Sizes and Connect Watson and Kay Streets
 - Major concern is that it increases flows downstream
 - 160 cfs to 190 cfs (19% increase during August 15, 2012)
 - Increase risk of downstream flooding

Summary of Alternatives

- Alternative 3-Install Subsurface Storage System
 - No increase in downstream flooding
 - Very innovative design
 - Design needs to be carefully developed
 - Storage system trench will complicate future replacement/repair of utility services to homes

Summary of Costs

- Only preliminary costs (-30% to 50%) developed
- Based on conceptual plans, refine after preliminary design

	Alternatives		
	1. Increase Pipe	2. Increase Pipe	3. Install
Item of Work	Sizes	Sizes & Connect	Subsurface Storage
		Watson and Kay	
		Streets	
Site Prep	\$190,000	\$280,000	\$230,000
Water Control	\$65,000	\$98,000	\$70,000
Earthwork	\$380,000	\$520,000	\$550,000
Site Restoration	\$570,000	\$710,000	\$480,000
Drainage Improvements	\$1,600,000	\$2,000,000	\$1,600,000
Miscellaneous (e.g. engineering,	\$850,000	\$1,100,000	\$890,000
insurance, etc.)			
Subtotal (To Nearest \$100,000)	\$3,700,000	\$4,700,000	\$3,800,000

Conclusion

- Major challenges in watershed
 - No easy solutions
 - Problem will not go away quickly
 - Consider adaptation
 - Need to address stormwater whenever improvements made
- While subsurface storage system could improve flooding it has liabilities
 - Difficulty in future repairing and replacing utility services
 - Innovative design carries risks, need to be careful
 - No case histories or design guidance that applies past lessons learned
 - Will not solve every storm!
- Recommendation
 - Implement one upstream section of subsurface storage system
 - Better understand how best to design and construct before implementing entire system