Prescott Hall Drainage Study Project No. 22-012-3

Public Workshop #3 September 15, 2022

Challenging today. Reinventing tomorrow.

Introductions

- City of Newport
 - Rob Schultz, PE Director of Utilities
- RIDOT
 - Jody Richards, PE Pell Bridge Improvements Project Manager
- Jacobs
 - Peter von Zweck, PE Project Principal
 - McKenzie Banahan, PE Project Manager
 - Andrea Braga, PE Water Resources Service Lead
 - Erin O'Shea, EIT Modeling Lead

Agenda

- New Stakeholder Input
- Alternatives Evaluation Process
 - Survey 2 Results
 - Summary of Alternatives Considered
 - Alternatives Scoring Matrix Results
- Presentation of 'Best Fit' Mitigation Measures
 - Implementation Plan
 - Modeling Results and Flood Control Benefits
- Climate Change and Adaptation
- Conceptual Construction Costs
- Next Steps
- Open Discussion

New Stakeholder Input

Additional Photos and Videos from Past Flooding Events

- September 13, 2022
 - 1.36 inches rain in 20 minutes

- July 14, 2020
 - 1.53 inches rain in 40 minutes

Resident Video – Malbone Rd & Smith Ave

Public Meeting 2 Stakeholder Comments

- Alternatives suggested by stakeholders:
 - Pump station
 - Diverting flow west down Van Zandt Ave to a new outfall
 - Upsizing 42" outlet pipe from Prescott Hall, as previously recommended in the 2014 study
 - Included in the alternative evaluation process summarized later in this presentation
- Feedback on the evaluation criteria
 - Residents top priority is to reduce the depth of flooding
 - Issued survey to solicit input from all stakeholders regarding evaluation criteria weightings; results are included in this presentation

Alternatives Evaluation Process

Alternatives Evaluation Process

Our approach to identify solutions that address a broad range of constraints and community issues.

 Utilizing multi-objective decision analysis (MODA) allows for evaluation of all factors

Survey 2 Results

- Total responses as of 9/14/22: 15
- All respondents are residents/property owners

Summary of Alternatives Considered

- 20 total improvement projects considered:
 - 14 conveyance "C" alternatives
 - 4 storage "S" alternatives
 - 1 green infrastructure "G" alternative
 - 1 pump station "P" alternative

Summary of Alternatives Considered – Storage and Green Infrastructure

- S-1: Detention Area 1 (adjacent to new DOT ramp)
- S-2: Detention Area 2 (existing Hwy 138)
- S-3: Detention Area 3 (Old Casino Parking Lot)
- S-4: Detention Area 4 (near Prescott Hall & Garfield)
- G-1: Green Infrastructure Upstream of Watershed

Note: **DETENTION** is the temporary, short-term storage of excess stormwater.

Summary of Alternatives Considered – Conveyance and Pumps

- C-1: Drainage Improvements on Butler/Southmayd
- C-2: Redirect Outlet from Prescott Hall to New Detention Area (S-2)
- C-3: New Pipe/Channel from Garfield to New Detention Area (S-3)
- C-4: Upgrade Existing RIDOT Culverts
- C-5: Drainage Improvements on Hillside/Smith
- C-6: Drainage Improvements on Malbone
- C-7: Install a Tide Gate
- C-8: Halsey Street Box Culvert
- C-9: New Outfall West of Van Zandt
- C-10: New Box Culvert from Casino Parking Lot
- C-11: Line 42" Outlet Pipe from Prescott Hall
- C-12: Malbone Channel Box Culvert
- C-13: Drainage Improvements on Garfield
- C-14: Drainage Improvements on Homer/Sheffield
- P-1: Pump Station

Alternatives Scoring Matrix Results

'Best Fit' Mitigation Measures

Recommended Mitigation Measures

- S-1: Detention Area 1
- S-2: Detention Area 2
- S-3: Detention Area 3
- C-1: Drainage Improvements on Butler/Southmayd
- C-2: Redirect Outlet from Prescott Hall to New Detention Area (S-2)
- C-3: New Pipe/Channel from Garfield to New Detention Area (S-3)
- C-4: Upgrade Existing RIDOT Culverts
- C-5: Drainage Improvements on Hillside/Smith
- C-6: Drainage Improvements on Malbone
- C-11: Line 42" Outlet Pipe from Prescott Hall
- C-12: Malbone Channel Box Culvert
- C-13: Drainage Improvements on Garfield
- C-14: Drainage Improvements on Homer/Sheffield

Implementation Plan

- A phased implementation schedule allows for:
 - Ability to prioritize alternatives that can be implemented more quickly than others
 - Necessary coordination with relevant property owners
 - Time to acquire necessary permits and easements
 - Ability to disperse costs to accommodate funding limitations

- Phase 1:
 - Short-Term Controls
 - Alternatives prioritized based on most direct benefit to Prescott Hall and mitigation of impacts from the Pell Bridge project
 - Timeline: ±1-3 years
- Phase 2:
 - Long-Term Controls
 - Alternatives focus on capturing flow further upstream and/or require more time to coordinate with external partners
 - Timeline: ±3-8 years

Implementation Plan – Phase ' (Short-Term Controls)

- Anticipated Timeline: ±1-3 years
- Alternatives Included:
 - S-1: Detention Area 1
 - S-2: Detention Area 2
 - C-1: Drainage Improvements on Butler/Southmayd
 - C-2: Redirect Outlet from Prescott Hall to New Detention Area (S-2)
 - C-11: Line 42" Outlet Pipe from Prescott Hall
 - C-13: Drainage Improvements on Garfield
 - C-14: Drainage Improvements on Homer/Sheffield

10-year, 24-hour Design Storm

- 5.03 inches in 24 hours¹
- Peak intensity: 4.22 in/hr
- Meets Rhode Island State Standards for stormwater design²
- Used tidal data from the July 14, 2020, storm with peaks lined up

1 NOAA Atlas 14 Point Precipitation Frequency Estimates <u>https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ri</u> 2 Rhode Island Stormwater Design and Installation Standards Manual <u>https://dem.ri.gov/sites/g/files/xkgbur861/files/pubs/regs/regs/water/swmanual15.pdf</u>

- Flood Volume Differences in Prescott Hall
 - 7% reduction from existing conditions
 - 22% reduction from baseline conditions
- Total Flood Volume Differences
 - 51% reduction from existing conditions
 - 55% reduction from baseline conditions

Difference Between Existing Conditions

Implementation Plan – Phase 2 (Long-Term Controls)

- Anticipated Timeline: ±3-8 years
- Alternatives Included:
 - S-3: Detention Area 3
 - C-3: New Pipe/Channel from Garfield to New Detention Area (S-3)
 - C-4: Upgrade Existing RIDOT Culverts
 - C-5: Drainage Improvements on Hillside/Smith
 - C-6: Drainage Improvements on Malbone
 - C-12: Malbone Channel Box Culvert

- Flood Volume Differences in Prescott Hall
 - 78% reduction from existing conditions —
 - 82% reduction from baseline conditions
- Total Flood Volume Differences
 - 72% reduction from existing conditions
 - 74% reduction from baseline conditions

Legend

-5.78 - -3.35 -3.35 - -2.27 -2.27 - -1.35 -1.35 - -0.25

0.25 - 2.66

Modeling Results and Flood Control Benefits – Summary 10-year, 24-hour Design Storm

Location	Parameter	Existing	Baseline	Phase 1	Phase 2	
Prescott Hall	Total Flood Volume (MG)	3.92	4.67	3.65	0.87	
	Flood Volume Change from Existing (%)	-	+19.1%	-6.89%	-77.8%	
Total Across Watershed	Total Flood Volume (MG)	31.8	34.6	15.5	8.96	
	Flood Volume Change from Existing (%)	-	+8.09%	-51.3%	-71.8%	

Climate Change and Adaptation

Newport State AP and City of Newport WPCP Precipitation for Indicated Durations and NOAA 14 Return Periods (Yrs)

Tropical Storm Ida – September 1-2, 2021

- 6.34 inches rain in 24 hours
- Comparable to 100-yr, 6-hr return frequency (1% chance of occurring in any given year)
- Heaviest rainfall between 1 AM 5 AM on Sep 2, 2021
 - Peak observed tide coincident with peak precipitation intensity at 3:30 AM

Phase 2 Modeling Results – Tropical Storm Ida September 1-2, 2021

- 7.62 inches in 24 hours
- Total flood volume: 18.75 MG
 - 52% increase from the 10-yr, 24-hr design storm
- Prescott Hall flood volume: 2.67 MG
 - 67% increase from the 10-yr,
 24-hr design storm

FEMA Flood Boundaries

100-year Flood Zone (1%)

500-year Flood Zone (0.2%)

Drainage Area

- Watershed lies within the 100-year and 500year floodplains
- FEMA map does not take into consideration sea level rise or storm surge

Adaptation Measures for Properties Within 100 and 500-yr Floodplains

- There will be events that exceed the 10-yr design criteria, which may be caused by extreme precipitation, storm surge, and sea level rise
- Examples of adaptation measures for residential buildings that cannot be elevated (FEMA P-1037, Sep 2015):
 - Elevate building utilities and associated equipment
 - Install flood resistant windows and doors
 - Basement infill; Abandon or elevate lowest interior floor
 - Backflow (non-return) valves/shutoff valves

Conceptual Construction Costs

Conceptual Construction Costs

- Phase 1:
 - 7 improvement projects
 - 73.3 acre-ft detention
 - 4,200 linear feet pipes/culverts
 - Located in public right-of-way

Phase 2:

- 6 improvement projects
- 59.3 acre-ft detention
- 4,300 linear feet pipes/culverts
- Located in public and private

	Phase 1			Phase 2		
	City	State	Private	City	State	Private
Construction Cost by Location ¹	\$3.2 M	\$17.0 M	-	\$5.1 M	\$8.7 M	\$17.3 M
Total Construction Cost ¹	\$20.2 M			\$31.1 M		

¹Phase 1 escalated to 2024; Phase 2 escalated to year 2028 Costs shown are planning level estimates (AACE Class 5) Actual costs may vary +100%/-50% depending on final design and market conditions

Next Steps

Next Steps

Current Study

Issue draft and final report

Future Work

- Coordinate with DOT to maximize what can be included in Pell Bridge project
- Initiate preliminary design
 - Optimize alternatives
 - Reduce costs
 - Address constructability
 - Evaluate permit requirements
 - Evaluate financing options and rate impacts

