

CSO Program Stakeholder Workgroup: Meeting #7 System Master Plan Control Options

City Hall – Council Chambers August 9, 2012

Welcome & Introductions

- City Representatives
 - Julia Forgue Director of Utilities
- CH2M HILL
 - Mike Domenica Program Manager
 - Peter von Zweck Project Manager
 - Dingfang Liu Senior Technologist
 - Ben Minnix Engineering Intern
- Stakeholder Workgroup Participants

1639

The objective for this meeting is to collect comments from stakeholders on how each control technology meets the City's objectives so that a draft SMP can be prepared.

The draft SMP will be presented for final comment on September 6, 2012 prior to a presentation to City Council.

Continue to identify & implement the most costeffective solution for reducing the number of CSOs to a level protective of Newport Harbor and acceptable to the community and regulatory agencies.

Strategy to Achieve the Goals of the CSO Program

- 1. Comply with EPA and RIDEM negotiated CAP requirements
- 2. Achieve reasonable application of water quality standards
 - Protect King Park Beach
 - Determine the best use of the Washington St. CSO Facility
- 3. Maximize use of existing facilities
- 4. Prioritize capital repair & replacement projects
 - Invest in sewerage system for next generations
- 5. Control Operations & Maintenance (O&M) requirements (minimize need for new capital facilities)
- 6. Identify a program & an implementation schedule that is affordable to Newport customers

Meeting Agenda

- Overview of the Program Schedule
- Approval of Previous Minutes
- Parking Lot Follow-up Items
- Key Meeting Topics
 - Preliminary Screening of SMP Control Technologies
 - Overview of Control Technologies
 - Costs and Benefits of Control Alternatives
 - Affordability Assessment
 - Discussion & Comments related to the Draft SMP
- Future Meetings, Wrap-up, Comments

Schedule of Stakeholder Meetings

	2011								2012															
	J	F	М	А	М	J	J	А	S	0	Ν	D	J	F	Μ	А	М	J	J	А	S	0	Ν	D
Meeting #1 - Overview		0																						
CSO System Tours			0																					
Meeting #2 - Metering & Extraneous Flow Investigations				0																				
Meeting #3 - GIS, CMOM & WPCP							0																	
Meeting #4 - Harbor Water Quality									0								We are here							
Meeting #5 - Financing & Rates											0													
Meeting #6 - Alternatives Evaluation Process														0										
Meeting #6a - Alternatives Evaluation Process Cont.															0									
Meeting #6b - Alternatives Evaluation Process Cont. (if needed)																	0							
City meeting with EPA & RIDEM (July 16, 2012)																								
Meeting #7 - Draft Collection System Capacity Assessment & SMP																								
Meeting #8 - Updated SMP																					0			
SMP - Final to EPA																								

The first 5 meetings focused on existing conditions in the collection system, the harbor and rates.

The last 5 meetings focus on future conditions including: evaluation criteria, technologies, expected benefits, costs and implementation schedules.

Stakeholder Workgroup Mission Statement

- To review proposed plans and projects for the Program and provide recommendations to the City about the potential benefits and impacts of proposed plans and projects to all users of the system.
- To share Program plans and project information with each stakeholder's organization to aid the City in its efforts to communicate Program information.
- To support the Program's public education efforts through participation in public education activities.

PREVIOUS MEETING'S MINUTES

10

PARKING LOT FOLLOW-UP ITEMS

11

How do sources from upstream in the Bay affect water quality in Newport Harbor?

- Response by Angelo Liberti - RIDEM

Can you provide an update on the status of the catch basin disconnection process?

- As of June 30th the City completed physical inspections for 91% of its catch basins
- 57 catch basins have been identified as connected to the sanitary sewer system
- Inspections of privately owned and RIDOT catch basins continues as access is granted
- The City has prepared an RFP for drawings and specifications required to remove the catch basins identified to-date
 - Design is scheduled for FY2013
 - Construction will be completed in phases

PRELIMINARY SCREENING OF CONTROL TECHNOLOGIES

Purpose of Preliminary Screening of Control Technologies

Purpose

- To identify the control technologies and project sites that will best achieve stakeholder priorities & program goals
- Technologies and project sites identified by the screening are then studied in more detail
 - Conceptual designs
 - Hydraulic modeling to evaluate performance
 - Estimates for construction, operating costs

Methodology for Preliminary Screening of Control Technologies

Methodology

Set priorities for evaluation criteria (Meetings 6 and 6a)

- 1. Comply with Clean Water Act
- 2. Keep Rates at or under affordability limits
- 3. Meet WQ standards in harbor
- 4. Support designated uses in harbor

Identify candidate technologies and project sites (Meeting 6b)

- 8 technology groups
- 55 candidate projects

Perform a qualitative assessment of control options (new today)

- Incorporated ratings for engineering/technical criteria
- Scored candidate projects 0 to 10

Results of Preliminary Screening

RHODE

OVERVIEW OF SELECTED CONTROL TECHNOLOGIES

18

Control Technologies Evaluated for the SMP

- Upgraded CSO Treatment
- Capacity Upgrades
- Infiltration/Inflow Reduction
- Off-line Storage
- System Optimization
- WPCP Improvements
- Green Controls
- In-line Storage

CSOT-1.1: HRT at Wellington

Key Attributes:

- Demo existing microscreens for new disinfection tank
- Add High-Rate Clarification (HRC) unit
- Raise/Bulkhead existing weir between sanitary and storm pump wet wells

RHODE ISLAND 1⁶39

CSOT-1.2: HRT at Washington

N E W P O R T RHODE ISLAND 1⁶39

- Reconfigure existing tank for disinfection
- Add HRC unit
- Raise/Bulkhead

 existing weir between
 influent wet well and
 primary
 sedimentation tank

Capacity Upgrades to Conveyance System

- CU-2: Catchment 10 Reroute (new pump station)
- CU-3: Additional Pumping at Long Wharf PS (increase pumping capacity)
- CU-4: Additional Pumping at Wellington Ave PS (increase pumping capacity)

23

CU-2: Pump Station for Catchment 10 NEWPO RHODE ISLA

- Flows from Van Zandt Ave sent to new PS, then to Long Wharf FM
- Existing 18" pipe could remain as wet weather flow overflow for emergency relief
- Estimated capacity needed: 3.5 mgd

Infiltration/Inflow Reduction

• II-1: Catch Basin Disconnections

- (57 - starting FY 2013)

- II-2: Manhole Cover Replacements
 (37 –completed FY 2012)
- II-4: Downspout Disconnections
 - (currently estimate ~6,100 downspouts are connected to the sanitary sewer system – future projects)

OS-2: Storage at WPCP

- Maximum Storage
 Volume: ~1.8 MG
- Located on the south portion of WPCP site
- Can accept flows exceeding WPCP's wet weather capacity
- Allows for flexible operation at WPCP

OS-11: Storage at Washington CSO Facility

- Storage Volume
 - Existing ~1 MG
 - New ~2.7 MG
- Located adjacent to CSO Facility
- Storage for peak wet weather flows

OS-19: Storage at King Park

- Maximum Storage
 Volume: ~0.9 MG
- Located adjacent to the Wellington CSO Facility
- Accepts wet weather overflows from Wellington

System Optimization

- SO-1: WPCP Flow Optimization
- SO-2: Increased Pumping Capacity/ Better Use of System Capacity
 - Using standby pumps at Wellington Ave PS and Long Wharf PS
- SO-3: Weirs (increasing weir height)
 - Weir from Thames St to Wellington Ave CSO Facility
 - Five weirs on the twin 54" pipes from Thames
 Interceptor to Long Wharf Pump Station

WPCP-1: WPCP Upgrade and Expansion

- Key Attributes:
 - Building on projects already in the CIP
 - Headworks, solids handling and disinfection
 - Increase plant capacity
 - Average day flow from 10.7 to 14.4 mgd
 - Wet weather capacity from 19.7 to 30 mgd
 - Primary clarifier improvements add reliability and allow for sustained wet weather treatment
 - Improvements to the aeration tank and final clarifier allow the plant to achieve maximum capacity

WPCP-2: Chemically Enhanced Primary Treatment (CEPT)

N E W P O R T RHODE ISLAND 1⁶39

- Key attributes:
 - Upgrade
 mechanical
 screens and
 grit chambers
 - Install
 chemical
 storage/feed
 system
 - Install UV disinfection

Increases TSS and BOD removal rates

Questions on..

- Initial screening process or results
- 15 shortlisted control options

COSTS FOR SELECTED CONTROL ALTERNATIVES

32

Concepts for Evaluating Costs for Control Alternatives

- Economics are an important component evaluating the short and long-term impacts of control alternatives.
- Life cycle costs provide a consistent basis for comparing alternatives by accounting for differences in capital costs, O&M costs, and expected service life.
 - Capital Costs -> Design, Construction, Legal, Land, Administration, Contingencies...
 - O&M Costs -> Parts, labor, power, chemicals...
 - Service Life -> Varies by component...

Key Assumptions for Economic Evaluations of Control Alternatives

Capital Costs

- Components of Costs
 - Construction -> Unit prices
 - Engineering -> 15%
 - Construction Mgmt -> 10%
 - Contingency -> 30%
- Unit prices for Components
 - City of Newport
 - New England
 - CH2M HILL database for U.S.
- Followed AACE guidelines
 - Class 4 -> Concept Level
 Accuracy -> 15 to +30%
 - Class 5 -> Planning Level
 Accuracy -> -30 to +50%

Annual O&M Costs

- Labor
 - Local Operations
 - Industry standard values
- Electric rate -> \$0.12/kw-hr
- Demand Charge -> \$7/kw
- Pump Efficiency -> 95%
- Parts -> Varies by component

Life Cycle Costs

- Life expectancy
 - Sewers -> 70 years
 - Structures -> 50 years
 - Equipment -> 20 years
- Planning Period -> 25 years
- Discount Rate -> 2%
- Inflation -> 0%

Example Cost Estimate for OS-2 Offline Storage at the WPCP

Example List of Work Activities

	Description	Takeoff Quantity
	WPCP STORAGE	
	Site/Civil	
	Site Preparation	
	Site Preparation	
	Site Preparation, Clearing and Grubbing	
	Selective clearing, brush, medium clearing, with dozer, ball and chain, excludes removal offsite	0.54 acre
	Topsoil stripping and stockpiling,800' haul, topsoil, clay, medium hard, ideal conditions, 300 H.P. dozer	438.89 cy
	Load & place Topsoil from stockpiling,600' haul, topsoil, clay, medium hard, ideal conditions, 300 H.P. dozer	438.89 cy
	31-15-01-00 Site Preparation, Clearing and Grubbing	0.52 AC
_	TBK-201 Site Preparation	0.52 AC
	Site Erosion Control	
	Site Preparation, Erosion Controls / Pre-construction	
_	Silt Fence, Heavy-Duty, Subcontracted	1,500.00 lf
_	Erosion control, hay bales, staked, Subcontracted, Install and Remove	4.00 ea
_	Temp Seed	6,000.00 sf
_	Permanent Seeding	23,700.00 sf
_	Temp Mulching	666.00 sy
_	Inlet Protection, Subcontracted	5.00 ea
_	Stabilized Construction Entrance, Clean Rock, 1-1/2" thru 3"	99.56 tn
_	Filter Fabric under Stabilized Construction Entrance	186.67 sy
_	Maintenance, erosion control during construction	1.00 ls
_	Remove erosion control	1.00 ls
	31-15-04-00 Site Preparation, Erosion Controls /	0.52 AC
	Pre-construction	
	TBK-202 Site Erosion Control	0.52 AC
	Site Grading	
_	Earthworks, Sitework, Site Grading	
_	Roup' `*e Grading, Large Crew	`933.00 sy
_	Fin machine 3 DAVES ONV	n0 sy
_		SY

Example List of Cost Categories

Description	Amount	Totals	Hours	Rate
Labor	4,362,372		643,045.225 I	
Material	10,497,139			
Subcontract	3,838,193		00.054.700.1	
Equipment	3,398,435		88,051.7001	
Total Before Markupe	203,000	22 384 430		
Total Defore markups	22,501,155	22,501,155		
Project Staff & Home Office OH	1,790,491			8.000 %
Total Overhead	1,790,491	24,171,630		
General Conditions	1,692,014			7.000 %
Total General Conditions	1,692,014	25,863,644		
Material Sales & Use Tax - %				
Construction Equip Tax - %				
Total Taxes		25,863,644		
Profit on Previous Subtotal	2 060 002			8 000 %
Total Profit	2,009,092	27 932 736		0.000 %
Total Point	2,000,002	21,002,100		
Contractor MU on OFCI Equip				
Total MU on OFCI Equip		27,932,736		
Mobilization/Demobilization	1,119,698			3.000 %
Blder's Risk & Gen Liab Ins -%	373,233			1.000 %
Payment & Performance Bonds	432,950			1.160 %
Total Bonds and Insurances	1,925,881	29,858,617		
Contingency - %	7 464 654			25 000 %
Total Contingency	7 464 654	37 323 274		
	1,404,004	51,525,211		
Escalation on Estimate Total				
Total Escalation		37,323,271		
Mech Owner-Provided Equip				
Elec Owner-Provided Equip				
Total Owner-Provided Equipment		37,323,271		
Construction Total		37,323,271		

Summary of Planning Level Cost Estimates for Control Options

Project Code	Name/Brief Description	т	otal Capital Cost	А	Change in Annual O&M Cost		Equipment		Equipment		Equipment		Structures Pi		Structures		Piping		otal Annual Cost
	WPCP Upgrade & Expansion, Option 1																		
WPCP-1.1	(primary clarifiers)	\$	7,661,875	\$	-	\$	2,298,563	\$	3,830,938	\$	1,532,375	\$	303,410						
	WPCP Upgrade & Expansion, Option 2																		
WPCP-1.2	(aeration tank and final clarifiers)	\$	8,328,125	\$	-	\$	1,665,625	\$	4,164,063	\$	2,498,438	\$	301,062						
WPCP-2	СЕРТ	\$	12,842,213	\$	577,000	\$	2,568,443	\$	6,421,106	\$	3,852,664	\$	1,041,246						
OS-11	Washington CSO Facility Storage (3 MG)	\$	21,566,675	\$	26,000	\$	2,156,668	\$	16,175,006	\$	3,235,001	\$	758,728						
SO-1	WPCP Flow Optimization	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-						
CU-2	Catchment 10 Reroute (new 3.5 mgd PS)	\$	4,788,063	\$	68,000	\$	957,613	\$	2,394,031	\$	1,436,419	\$	241,088						
CSOT-1.1	Enhanced CSO Treatment (Wellington)	\$	23,562,500	\$	160,000	\$	4,712,500	\$	11,781,250	\$	7,068,750	\$	1,011,784						
CSOT-1.2	Enhanced CSO Treatment (Washington)	\$	38,430,113	\$	160,000	\$	7,686,023	\$	19,215,056	\$	11,529,034	\$	1,549,249						
OS-2	WPCP Storage (2MG)	\$	16,666,650	\$	24,000	\$	1,666,665	\$	12,499,988	\$	2,499,998	\$	590,249						
11-4	Downspout Disconnection	\$	25,821,413	\$	-	\$	-	\$	-	\$	-	\$	-						
SO-3	Weirs	\$	188,500	\$	-	\$	-	\$	188,500	\$	-	\$	5,994						
	King Park, Wellington Ave by CSO Facility,																		
OS-19	Storage (0.9 MG)	\$	17,628,813	\$	27,000	\$	1,762,881	\$	13,221,609	\$	2,644,322	\$	625,939						
	Additional Pumping Long Wharf (Bigger																		
CU-3	pumps - 3, 14 mgd pumps)	\$	2,310,955	\$	20,000	\$	462,191	\$	1,155,477	\$	693,286	\$	103,541						
	Additional Pumping at Wellington (Bigger																		
CU-4	pumps, 3, 3 mgd pumps)	\$	861,198	\$	15,000	\$	172,240	\$	430,599	\$	258,359	\$	46,132						
	Increased Pumping Capacity/Better Use of																		
SO-2	System Capacity	\$	-	\$	21,900	\$	-	\$	-	\$	-	\$	21,900						

BENEFITS OF SELECTED CONTROL OPTIONS

Overview of Approach to Evaluations NEWPORT RHODE ISLAND

- 1. Identified improvements to be used as a baseline for alternative analyses
- 2. Formulated combinations of control technologies
 - Baseline
 - 12 Scenarios
- 3. Utilized calibrated model to evaluate the benefits
 - Evaluated them using a 2-year, 6-hour storm
 - Evaluated selected scenarios for a 5-year and 10-year storms
- 4. Computed benefits for each alternative
 - Volume reduction
 - Pollutant loads

List of Projects Included in the Baseline

- Projects that have been identified in the City's CIP or recommended for future improvements to maintain current system operation
 - II-2: Vented Manhole Cover Replacements (FY 2012)
 - II-1: Catch Basin Disconnections (starting FY 2013)
 - Improvements to WPCP (headworks, solids processing, disinfection)
 - Improvements to the Wellington Ave CSO Facility Sanitary Pump Station (per 2010 evaluation)
 - Improvements to Ruggles and Beach Station PSs
 - Pipe capacity and rehabilitation projects

Summary of Alternatives Evaluated for the SMP

·						S	cenari	io					
Control Technology	BL	RC	T1	T2	Т3	S1	S2	S 3	C1	M1	M2	M3	M4
Recently Completed or Planned CIP Projects	•	•	•	•	•	•	•	•	•	•	•	•	•
WPCP-1 WPCP Upgrade & Expansion			•	•	•	•	•			•			
WPCP-2 CEPT			•	•	•							•	
OS-11 (Washington CSO Facility)						•	•	•		•	•		
SO-1 WPCP Flow Optimization				•	•		•			•		•	•
CU-2 (Catchment 10 Reroute)					•				•	•	•	•	•
CSOT-1 Enhanced CSO Treatment		•	•	•	•								•
OS-2 (WPCP)						•	•					•	
II-4 Downspout Disconnection									•	•	•	•	•
SO-3 Weirs				•	•		•						•
OS-19 (King Park, Wellington Ave by CSO Facility)						•	•	•			•		
SO-2 Increased Pumping Capacity/Better Use of System Capacity			•	•	•		•	•	•	•	•	•	•

Water Quality Benefits for Selected Combinations – Reduction in Volume RHODE ISLAND 1639

CSO Overflow Percent Reduction

2-Year, 6-Hour Duration Event

Water Quality Benefits for Selected Combinations – TSS Loads

Water Quality Benefits for Selected Combinations – BOD Loads

Water Quality Benefits for Selected Combinations – Fecal Coliform Loads RHODE ISLAND 1639

Summary of Planning Level Cost Estimates for Scenarios

Scenario Code	Scenario	Total Capital Cost	Total Change in Annual O&M Cost	Total Annual Cost
BL	Baseline 1	\$32,850,148	\$-	\$-
	Regulatory			
RC	Compliance	\$56,412,648	\$160,000	\$1,011,784
T1	Treatment 1	\$115,346,848	\$918,900	\$3,187,405
Т2	Treatment 2	\$115,535,348	\$918,900	\$3,933,583
Т3	Treatment 3	\$128,651,535	\$986,900	\$4,475,734
S1	Storage 1	\$88,712,285	\$77,000	\$1,974,916
S2	Storage 2	\$96,562,660	\$98,900	\$2,306,221
S3	Storage 3	\$88,224,135	\$74,900	\$2,017,033
C1	Conveyance	\$79,638,123	\$89,900	\$873,455
M1	Master Mix 1	\$101,204,798	\$115,900	\$1,632,183
M2	Master Mix 2	\$102,843,610	\$142,900	\$1,653,649
M3	Master Mix 3	\$109,146,985	\$690,900	\$2,504,950
M4	Master Mix 4	\$146,144,823	\$986,900	\$4,174,672

DISCUSSION

- Scenarios
- Program costs
- Projected Water Quality impacts
- Performance relative to high priority criteria

AFFORDABILITY ANALYSIS

Why Affordability & Why Now?

- Set budget before shopping.....
 - Set budget of what the City can "afford"
 - Design program implementation elements & schedule within affordable budget
- EPA guidance documents frame the consideration of affordability
- City must build its own case

Wastewater Rates in RI

Annual Residential Sewer Charges For Participating Rhode Island Cities & Towns

Does not include CSO fixed fee of \$192 for 2011.

- Source: 2011 Narragansett Bay Commission Residential Sewer User Survey
- In this survey all Annual Residential Sewer Charges are based on 97.6 HCF.
- Newport & NBC are the only CSO communities

Relation of Rates to Services

Financial Burden per EPA Affordability Guidelines

- Newport is classified as Mid-range financial capability
- A High Burden for Newport would be when a household with median income has to spend more than 2% of annual income on all Water Pollution Control costs

	Residential Indicator (Cost Per Household as a Percent of Median Household Income)								
Permittee's Financial Capability Indicators Score	Low (Below 1 %)	Medium (Between 1% and 2%)	High (Above 2.0%)						
Weak(Below 1.5)	Medium Burden	High Burden	High Burden						
Mid- Range (Between 1.5 and 2.5)	Low Burden	Medium Burden	High Burden						
High (Above 2.5)	Low Burden	Low Burden	Medium Burden						

Key Assumptions for Affordability Analysis

Inflation Rate	3%

Debt Funding

Term	20
Interest Rate	4%
Cost of Issuance	2%
Bond Reserve	10%
Coverage Ratio	1.25

Growth Rate for Number Accounts

Residential	1%
Commercial	0.50%

Growth Rate for Sewer Flows

Residential	1%
Commercial	0.50%

Typical Residential Quarterly Sewer Flow (thousand gallons)	15
---	----

Growth for Median Household Income (MHI)	2.00%
	2100/0

Alternative Summary

DISCUSSION

- EPA process for defining affordability
- Projected costs for scenarios
 - Those that are affordable
 - Those that are not affordable
- Potential impacts on rates

STAKEHOLDER EVALUATION

		SCENARIO							
Evaluation Criteria	Weight	BL		RC		M1		M4	
		Rating	Score	Rating	Score	Rating	Score	Rating	Score
Cost/ Affordability									
Water Quality Benefits									
Social Impacts									
Regulatory Compliance									
Engineering/ Flexibility									
Total Score									

Evaluate criteria weight and rating from 0-10, with 10 being best meets priority criteria and 0 being least meets priority criteria.

Evaluation Criteria

Cost/Affordability

- Capital Cost
- Life-Cycle Cost
- Customer Rate
- Percent Mean Household Income

Water Quality Benefits

- Decrease in days of beach closure
- Decrease in days of shell fishing closure
- Decrease in days of full-body contact

Community Impacts

- Use of desirable sites
- Construction impacts
- Operational impacts

Regulatory Compliance

- Decrease in excursion of water quality standards
- Compliance with Clean Water Act
- Compliance with CSO Policy

Engineering/Flexibility

- Confidence that the projects will achieve targeted hydraulic outcome
- Ability to adapt plan for future conditions and improvements

NEXT MEETING

Next Steps for the SMP

- Refine alternatives
 - Mix of controls
 - Facility sizes
 - Run a typical year
 - Recalculate loads
- Prepare Implementation Plan
 - Strategies for implementation
 - Schedule for construction
 - Recalculate rate impacts

Next Meeting

Topic: System Master Plan Draft

- Recommended Controls
- Program Costs
- Implementation Strategies
- Implementation Schedule
- Date: September 6, 2012

Time: 3:00 PM

Location: Council Chambers

DISCUSSION