Newport Water Annual Water Quality Report

Newport Water is pleased to present this water quality report for 2023 to our customers. In accordance with the Safe Drinking Water Act all water utilities are required to issue an annual Consumer Confidence Report to promote customer awareness of the quality of their drinking water. This brochure is a snapshot of the water quality from January 2023 through December 2023. Included are details about where your water comes from, what it contains, and how it compares to EPA standards. In 2023, Newport Water conducted 80,525 analyses to monitor 76 regulated drinking water contaminants and 87 unregulated drinking water contaminants. The following table indicates only the contaminants that were detected, even if the detected level was below the maximum level set by the EPA. For the year 2023 the Newport System had no violations of the Safe Water Drinking Act standards. We have also included the unregulated contaminant, chlorate, in the table under Unregulated Contaminant monitoring. Newport Water System has initiated a monitoring program for chlorate in order to be prepared for any EPA regulation or health advisory in the future. Please know that the employees of Newport Water are committed to providing you water that meets all EPA and state drinking water standards.

City of Newport Department of Utilities Water Division

City of Newport Department of Utilities Water Division PWSID# 1592010

City of Newport Department of Utilities Water Division

This report contains important information about your drinking water. We recommend all our customers review the information or, if necessary, have someone translate it for you. Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, o hable con alguien que lo entienda.

2023 ANNUAL WATER QUALITY REPORT

(Consumer Confidence Report)

City of Newport Department of Utilities Water Division PWSID# 1592010

About Newport Water

About Newport Water

The original water works in Newport was started in 1876. The Newport Water Works Company was incorporated in 1881, and was succeeded by the Newport Water Corporation in 1929. Since 1936, the City of Newport has owned and operated the system. The Newport Water Division is a division within the City of Newport's Utilities Department and is responsible for the operation and maintenance of the system. Newport Water operates as an enterprise fund and is independent of the overall City budget. Newport Water is licensed by the RI Department of Health as a Public Water Supplier No. 1592010. Newport Water is regulated by the Rhode Island Public Utilities Commission.

Newport's Water Supply

Newport Water draws its raw water supply from a system of nine surface reservoirs: North and South Easton Pond, Paradise Pond, Gardiner Pond, St. Mary's Pond, Sisson Pond, Lawton Valley Reservoir, Nonquit Pond, and Watson Reservoir. These reservoir systems are located in a basin area totaling 18.625 square miles or 11,920 acres of rural, forested

Additional Health Information

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health risk and effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include: and some developed lands. The reservoirs located in Newport, Middletown, Portsmouth, Tiverton, and Little Compton are interconnected through a complex network of pipelines and pumping stations. Newport Water has purchased 350 acres of conservation easements to protect raw water quality of the reservoirs.

The water is treated at either Station 1 Plant in Newport or the Lawton Valley Plant in Portsmouth. The combined design capacity of the plants is 16 million gallons of treated water per day.

Newport's Distribution System

Newport Water's distribution system consists of water mains of various size, material and age which carry water throughout Newport, Middletown and a portion of Portsmouth to each individual customer. In addition, Newport Water provides water wholesale to the Portsmouth Water and Fire District and the U.S. Navy for distribution within their systems. Newport Water maintains within our system approximately 14,500 services, 170 miles of water main, 3,300 valves and 1,000 hydrants.

Source Water Assessments

In 2003, the University of Rhode Island, in cooperation with

RIDOH and other state and federal agencies, assessed the threats within the watersheds of Newport Water's water supply sources. The assessment found that our water sources on Aquidneck Island and in Little Compton and Tiverton are moderately susceptible to contamination. Monitoring and protection efforts are especially important to assure continued water quality. Newport Water updated the 2003 Assessment in 2010. The complete Source Water Assessment Report is available at our office at 70 Halsey Street.

Cross-Connection Control Plan

Cross-connections between public water supplies and non-potable sources of contamination can represent one of the most significant threats to health in the water supply industry. A cross connection control program protects the public water supply from the possibility of contamination or pollution through backflow or back-siphonage into the public water system from a building's internal plumbing system. The Federal Safe Drinking Water Act requires that the water supplier has the primary responsibility for preventing water from unapproved sources from entering the public potable water system. In March 2010, Newport Water adopted a Cross-Connection Control Plan which is available at www.cityofnewport.com/crossconnectcontrolprogram.

(A) Microbial contaminants, such as viruses and bacteria, which may come from septic systems, agricultural livestock operations and wildlife.

- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff; oil and gas production, mining or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons who have HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Concerning Lead in Our Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Newport Water Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap until the water is as cold as it will get before using for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.cityofnewport.com/lead.

2023 DETECTED CONTAMINANTS TABLE

This table shows the results of our combined water-quality analyses for both Station 1 - Newport and Lawton Valley - Portsmouth systems from Jan. 1, through Dec. 31, 2023. Every regulated contaminant that we detected in the water, even in the most minute traces, is listed here along with the highest levels allowed by regulation (MCL), the ideal goals for public health, the amounts detected, the usual sources of such contamination, footnotes explaining our findings and a key to units of measurement.

aminants							
Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
2023	NTU	TT	n/a	0.58	n/a	Soil runoff	No
2023	lowest monthly % of samples meeting limit	Π	n/a	99.00%	n/a	Soil runoff	No
2023	removal ratio	Π	n/a	1.35	1.13 - 1.64	Naturally present in environment	No
nts							
Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
2023	ppb	10	0	0.002	ND - 0.002	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.	No
2023	ppm	2.0	2.0	0.008	0.006 - 0.008	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
2023	ppm	4.0	4.0	0.98	0.01 - 0.98	Water additive which promotes strong teeth	No
2023	ppm	10	10	1.74	0.21 - 1.74	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.	No
0000	MFL (Millions of					Decay of asbestos cement in water mains:	No
	Period 2023 2023 2023 nts Period 2023 2023 2023	Period Unit 2023 NTU 2023 lowest monthly % of samples meeting limit 2023 removal ratio 2023 removal ratio nts 2023 2023 ppb 2023 ppm 2023 ppm 2023 ppm	Period Unit MCL 2023 NTU TT 2023 lowest monthly of samples TT 2023 removal ratio TT 2023 removal ratio TT nts Veriod MCL 2023 ppb 10 2023 ppm 2.0 2023 ppm 4.0 2023 ppm 10	Period Unit MCL MCLG 2023 NTU TT n/a 2023 % of samples TT n/a 2023 removal ratio TT n/a 2023 removal ratio TT n/a 2023 removal ratio TT n/a Period Unit MCL MCLG 2023 ppb 10 0 2023 ppm 4.0 4.0 2023 ppm 10 10	PeriodUnitMCLMCLGDetected Level2023NTUTTn/a0.582023lowest monthly wo of samples meeting limitTTn/a99.00%2023removal ratioTTn/a1.352023removal ratioTTn/a1.35PeriodUnitMCLMCLG2023ppb1000.0022023ppm2.02.00.0082023ppm4.04.00.982023ppm10101.74	Period Unit MCL MCLG Detected Level Range 2023 NU TT n/a 0.58 n/a 2023 lowest monthly % of samples meeting limit TT n/a 99.00% n/a 2023 removal ratio TT n/a 1.35 1.13 - 1.64 Period Unit MCL MCLG Detected Level Range 2023 ppb 10 0 0.002 ND - 0.002 2023 ppm 2.0 2.0 0.008 0.006 - 0.008 2023 ppm 4.0 4.0 0.98 0.01 - 0.98 2023 ppm 10 10 1.74 0.21 - 1.74	Period Unit MCL MCLG Detected Level Range Major Sources 2023 NTU TT n/a 0.58 n/a Soil runoff 2023 lowest monthly % of samples meeting limit TT n/a 99.00% n/a Soil runoff 2023 removal ratio TT n/a 1.35 1.13 - 1.64 Naturally present in environment 2023 removal ratio TT n/a 1.35 1.13 - 1.64 Naturally present in environment ths MCLG MCLG Level Level Range Major Sources 2023 ppb 10 0 0.002 ND - 0.002 Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes; 2023 ppm 2.0 2.0 0.008 0.006 - 0.008 Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits 2023 ppm 4.0 0.98 0.01 - 0.98 Water additive which promotes strong teeth 2023 ppm 10 1.74

Inorganic Contaminants

	Period	Unit	MCL	MCLG	Detected Level	# Of Sites > AL	Major Sources	SDWA Violation
Copper ²	2022	ppm	AL=1.3	1.3	0.053 ²	0	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	No
Lead ²	2022	ppb	AL=15	0	5.3 ²	0	Corrosion of household plumbing systems; erosion of natural deposits.	No
Disinfection By-prod	ducts							
	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Total Trihalomethanes (TTHM) ⁴	2023	ppb	80	n/a	73.0	25.3 - 57.5	By-product of drinking water chlorination	No
Haloacetic Acid 5	2023	ppb	60	n/a	20.1	8.0 - 39.3	By-product of drinking water chlorination	No
Chlorite	2023	ppm	1.0	0.800	0.427	<0.010 - 0.500	By-product of drinking water disinfection	No
Disinfectants								
	Period	Unit	MRDL	MRDLG	Detected Level	Range	Major Sources	SDWA Violation
Chlorine	2023	ppm	4.0	4.0	RAA = 1.20	0.36 - 2.19	Water additive used to control microbes	No
Chlorine Dioxide	2023	ppb	800	800	760	ND - 760	Water additive used to control microbes	No

onioguiatoa oona		ing						
	Period	Unit	MCL	MCLG	Detected Level	Range	Major Sources	SDWA Violation
Chlorate 7	2023	ppb	n/a	n/a	600	74 - 600	By-product of drinking water chlorination	n/a
Manganese 7	2023	ppm	n/a	n/a	0.043	ND - 0.043	Erosion of natural deposits; runoff from orchards.	n/a
Sodium	2023	ppm	n/a	n/a	51.0	24.3 - 51.0	Naturally occurring; road runoff; contained in water treatment chemicals; EPA regulations require us to monitor this contaminant while EPA resultance with the line with the it.	No

Water Quality Table Footnotes:

Station 1 TPE Metals

Unregulated Contaminant Monitoring

¹ 0.58 NTU was the highest single turbidity measurement recorded. The

- lowest monthly percentage of samples meeting the turbidity limit was 100%.
- ² Detected level indicates the 90th percentile value of the 30 samples taken. The Range indicates the number of samples above the action level.
- ³ Newport Water adds fluoride to its treated water as an aid in dental cavity prevention in young children.
- Some people who drink water containing TTHM's in excess of the MCL over many years may experience problems with their liver, kidneys or central nervous system and may have an increased risk of contracting cancer. Detected level is Stage 2 DBPR highest locational running annual average.

2023 SPECIAL PURPOSE MONITORING OF METALS AND SYNTHETIC ORGANICS

As part of Newport Water System's on going monitoring programs, we have continued testing sites for metals and synthetic organic compounds once per quarter for 2023. The sample sites include Station 1 total plant effluent, Lawton Valley Clearwell effluent, and Lawton Valley Tank effluent. This represents the water produced at the both water plants, after treatment, to the distribution system. Eleven metals and thirty-six synthetic organic compounds were analyzed. Below is a summary of the detected results. Please note ND = Not Detected

	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Barium	2023	ppm	2	0.009	0.005 - 0.009	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
Lawton Valley Cle	arwell Metals	5					
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Barium	2023	ppm	2	0.006	0.003 - 0.006	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
Lawton Valley Tan	k Effluent Me	etals					
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Barium	2023	ppm	2	0.006	0.004 - 0.006	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	No
Lawton Valley Cle	arwell Synthe	etic Organ	nics				
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Di(2-ethylhexyl) phthalate	2023	ppb	6	2.0	ND - 2.0	Discharge from rubber and chemical factories	No
Lawton Valley Tan	k Effluent Sy	nthetic O	rganics				
	Period	Unit	MCL	Detected Level	Range	Major Sources	SDWA Violation
Di(2-ethylhexyl) phthalate	2023	ppb	6	3.0	ND - 3.0	Discharge from rubber and chemical factories	No
	e results of ou	r UCMR 5	water-qua			ort and Lawton Valley - Portsmouth systems from Jan. 1 t have health-based standards set under the Safe Drinki	
					ted		SDWA

Monitoring	Period	Unit	MCL	MCLG	Level	Range	Major Sources	Violation
Lithium	2023	ppb	n/a	n/a	ND	ND	Naturally occuring; Erosion of natural deposits	. n/a
PFBS	2023	ppb	n/a	n/a	0.00292	ND - 0.00292		n/a
PFBA	2023	ppb	n/a	n/a	0.00594	ND - 0.00594	Industrial / manufacturing byproduct. Fire	n/a
PHFxA	2023	ppb	n/a	n/a	0.00506	ND - 0.00506	training / fire response sites.	n/a
PFPeA	2023	daa	n/a	n/a	0.00608	ND - 0.00608		n/a

2023 RIDOH PFAS//PF0A Source Water Data The Rhode Island "PFAS in Drinking Water, Groundwater, and Surface Water Act of 2022" required the Newport Water Division to sample all of its surface body reserviors and finished water for PFAS compounds. Six PFAS/PF0A compounds were specifically targeted by the legistation setting an interim Maximum Contaminant Level (MCL) of 20 Parts Per Trillion (PPT) lither individually of combined. The table below lists all PFAS compounds that were analyzed by the RIDOH State Laboratory on June 28, 2023 in our raw (untreated) source water. NT = NOT TESTED

RIDOH PFAS/PFOA Monitoring

⁵ Sampled and monitored at raw water supply reservoirs prior to treatment. ⁶ The EPA requires us to report this contaminant which is on the Contaminant Candidate List 4.

7 Sampled and monitored at the entry points and distribution system

8 Sampled and monitored at the both raw water supply as well as entry points to the distribution system.

9 Sample within distribution system

2023 Split PFAS/PFOA Source Water Data Samples were split from the ones submitted to RIDOH Laboratories on 6/28/23. Due to the presence of sediment the detection limit is elevated in Sissons, Paradise, Nonquit and North . Solit PEAS/PEOA Monitoring

	Period	Unit	MCL	North	South	Lawton Valley Reservior	St Marys	Paradise	Gardiner	Nonguit	Watson	Sissons	Major Sources
PFHpA	2023	ppt	20 ppt	5.12*	3.06	1.77	1.04*	3.42*	1.82	<10.0	0.851*	<10.0	inajor obaroco
PFHxS	2023	ppt	20 ppt	4.26*	2.68	1.48*	0.363*	2.86*	1.25*	<10.0	0.216*	1.83*	Industrial /
PFOA	2023	ppt	20 ppt	7.52*	5.00	4.69	2.17	5.62*	3.21	<10.0	1.63	<10.0	manufacturing
PFNA	2023	ppt	20 ppt	3.60*	2.07	0.719*	0.500*	<10.0	1.16*	<10.0	0.756*	<10.0	byproduct. Fire training / fire respons
PFOS	2023	ppt	20 ppt	10.20	11.4	8.70	1.17*	4.20*	3.69	<10.0	2.32	<10.0	sites.
PFDA	2023	ppt	20 ppt	1.97*	0.879*	0.637*	<1.63	2.10*	0.657*	<10.0	0.718*	<10.0	
Additiona	I PFAS/PF	OA Cor	npounds	from Sp	lit Samp	ina							
			-	-	-	Lawton Valley						. .	
	Period	Unit	MCL	North	South	Reservior	St Marys	Paradise	GardIner	Nonquit	Watson	Sissons	Major Sources
PFMPA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	_
PFPeA	2023	ppt	n/a	NT	NT	NT	NT	NT	NT	<10.0	NT	NT	
PFBS	2023	ppt	n/a	5.22*	<1.72	2.70	1.31*	<10.0	2.41	<10.0	0.682*	2.26*	_
PFMBA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	4.18*	<1.63	<10.0	<1.62	<10.0	
PFEESA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	_
NFDHA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	
4:2 FTS	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	
PFHxA	2023	ppt	n/a	<10.0	5.31	3.56	1.78	<10.0	2.03	<10.0	0.805*	<10.0	
PFPeS	2023	ppt	n/a	<10.0	0.337*	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	
HFPO-DA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	Industrial /
ADONA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	manufacturing byproduct. Fire
6:2 FTS	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	training / fire respons
8:2 FTS	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	sites.
PFUdA	2023	ppt	n/a	NT	NT	NT	NT	NT	NT	NT	NT	NT	
9CI- P30NS	2023	ppt	n/a	1.46*	<1.72	<1.71	<1.63	<10.0	0.242*	<10.0	<1.62	<10.0	-
11CL- PF30UdS	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	
PFDoA	2023	ppt	n/a	<10.0	<1.72	<1.71	<1.63	<10.0	<1.63	<10.0	<1.62	<10.0	
PFBA	2023	ppt	n/a	3.84*	3.72	2.55	1.96	<10.0	2.24	<10.0	1.40*	<10.0	
PFPA	2023	ppt	n/a	8.14*	6.28	3.42	1.71*	<20.0	2.13	<20.0	1.29*	<20.0	
PFUNA	2023	ppt	n/a	1.94*	0.417*	<1.71	<1.63	<10.0	0.392*	<10.0	0.552*	<10.0	

* The analytical result was below the instrument calibration range, but above the methode detection limit. The reported concentration is an estimate.

2023 RIDOH PFAS/PF0A Finished Water Data

The Rhode Island "PFAS in Drinking Water, Groundwater, and Surface Water Act of 2022" required the Newport Water Division to sample all of its surface body reserviors and finished water for PFAS compounds. Six PFAS/PF0A compounds were specifically targeted by the legistation setting an interim Maximum Contaminant Level (MCL) of 20 Parts Per Trillion (PPT) either individually of combined. The table below lists all PFAS compounds that were analyzed by the RIDOH State Laboratory on to a 00.0000 is not reserved. June 28, 2023 in our treated (finished) water.

RIDOH PFAS/PFOA Monitoring

	Period	Unit	MCL	Lawton Valley Treatment Plant Clearwell	Lawton Valley Treatement Plant Distribution Tank	Station #1 Total Plant Effluent	Major Sources
PFHpA	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	_
PFHxS	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	
PFOA	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	Industrial / manufacturing
PFNA	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	byproduct. Fire training / fire
PFOS	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	response sites.
PFDA	2023	parts per trillion	20 ppt	<1.00	<1.00	<1.00	
TOTAL OF RI SIX PFAS COMPOUNDS	2023	parts per trillion	20 ppt	<1.00*	<1.00*	<1.00*	

nal PFAS/PFOA Compounds Analyzed by RIDOH

	Period	Unit	MCL	Lawton Valley Treatment Plant Clearwell	Lawton Valley Treatement Plant Distribution Tank	Station #1 Total Plant Effluent	Major Sources
PFMPA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFPeA	2023	parts per trillion	n/a	<1.00	<1.00	1.70	
PFBS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFMBA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFEESA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
NFDHA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
4:2 FTS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFHxA	2023	parts per trillion	n/a	<1.00	<1.00	1.32	Industrial / manufacturing
PFPeS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	byproduct. Fire training / fire
HFPO-DA	2023	parts per trillion	n/a	<4.00	<4.00	<4.00	response sites.
ADONA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
6:2 FTS	2023	parts per trillion	n/a	21.7	5.15	<4.00	
8:2 FTS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFUdA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
9CI-P30NS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
11CL-PF30UdS	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	
PFDoA	2023	parts per trillion	n/a	<1.00	<1.00	<1.00	

*Please note that the RIDOH Center for Drinking Water Quality has required that concentrations listed for the "Total RI Regulated PFAS (Sum of Six)" include only those of the RI Regulated PFAS analytes that are above or equal to 2.00 PPT. RIDOH Laboratory reporting limits for these analytes is 1.00 PPT. Therefore any concentrations detected for those analytes between 1.00 PPT and 2.00 PPT will not be reflected in the total.

2023 Split PFAS/PF0A Finished Water Data Samples were split from the ones submitted to RIDOH Laboratories on 6/28/23. Below is the data pertaining to finished water sampling from these splits. NT = NOT TESTED Split Sampling PFAS/PFOA Monitoring

opine orampining							
	Period	Unit	MCL	Lawton Valley Treatment Plant Clearwell	Lawton Valley Treatement Plant Distribution Tank	Station #1 Total Plant Effluent	Major Sources
PFHpA	2023	ppt	20 ppt	<1.71	<1.71	0.860*	
PFHxS	2023	ppt	20 ppt	<1.71	<1.71	0.534*	
PFOA	2023	ppt	20 ppt	<1.71	<1.71	1.01*	Industrial / manufacturing
PFNA	2023	ppt	20 ppt	<1.71	<1.71	<1.71	byproduct. Fire training / fire response sites.
PFOS	2023	ppt	20 ppt	<1.71	<1.71	<1.71	
PFDA	2023	ppt	20 ppt	<1.71	<1.71	<1.71	

Solit PEAS/PEOA Con horvlenA shnuo

	Period	Unit	MCL	Lawton Valley Treatment Plant Clearwell	Lawton Valley Treatement Plant Distribution Tank	Station #1 Total Plant Effluent	Major Sources
PFMPA	2023	ppt	n/a	<1.71	<1.71	<1.71	
PFPeA	2023	ppt	n/a	NT	NT	NT	
PFBS	2023	ppt	n/a	0.414*	0.392*	0.993*	
PFMBA	2023	ppt	n/a	<1.71	<1.71	<1.71	
PFEESA	2023	ppt	n/a	<1.71	<1.71	<1.71	
NFDHA	2023	ppt	n/a	<1.71	<1.71	<1.71	
4:2 FTS	2023	ppt	n/a	<1.71	<1.71	<1.71	
PFHxA	2023	ppt	n/a	<1.71	<1.71	1.68*	
PFPeS	2023	ppt	n/a	<1.71	<1.71	<1.71	_
HFPO-DA	2023	ppt	n/a	<1.71	<1.71	<1.71	Industrial / manufacturing
ADONA	2023	ppt	n/a	<1.71	<1.71	<1.71	 byproduct. Fire training / fire response sites.
6:2 FTS	2023	ppt	n/a	<1.71	<1.71	<1.71	
8:2 FTS	2023	ppt	n/a	<1.71	<1.71	<1.71	_
PFUdA	2023	ppt	n/a	NT	NT	NT	
9CI-P3ONS	2023	ppt	n/a	<1.71	<1.71	<1.71	
11CL-PF30UdS	2023	ppt	n/a	<1.71	<1.71	<1.71	
PFDoA	2023	ppt	n/a	<1.71	<1.71	<1.71	
PFBA	2023	ppt	n/a	0.935*	0.949*	2.36	
PFPA	2023	ppt	n/a	<3.41	<3.41	2.66*	_
PFUNA	2023	ppt	n/a	<1.71	<1.71	<1.71	

EPA considers setting a limit on it.

	Period	Unit	MCL	North	South	Lawton Valley Reservior	St Marys	Paradise	GardIner	Nonquit	Watson	Sissons	Major Sources
PFHpA	2023	ppt	20 ppt	2.51	2.38	1.50	<1.00	1.30	1.26	<1.00	<1.00	<1.00	
PFHxS	2023	ppt	20 ppt	2.40	2.41	1.05	<1.00	1.15	<1.00	<1.00	<1.00	<1.00	
PFOA	2023	ppt	20 ppt	4.09	3.82	3.46	1.69	2.51	2.05	2.81	1.03	1.13	Industrial /
PFNA	2023	ppt	20 ppt	1.24	11.7	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	manufacturing
PFOS	2023	ppt	20 ppt	7.58	12.8	8.47	1.35	2.47	3.42	1.69	2.61	<1.00	byproduct. Fire training / fire
PFDA	2023	ppt	20 ppt	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	response sites.
TOTAL OF RI SIX PFAS Compounds	2023	ppt	20 ppt	16.6*	21.4*	11.9*	<1.00*	4.98*	5.47*	2.81*	2.61*	<1.00*	

Additional PFAS/PFOA Compounds Analyzed by RIDOH

	Devied	11	MCL	North	Cauth	Lawton Valley	Ct Marria	Davadiaa	Condinor	Noneuit	Wataan	Ciesene	Majar Courses
	Period	Unit		North	South	Reservior	St Marys	Paradise	GardIner	Nonquit	Watson	Sissons	Major Sources
PFMPA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
PFPeA	2023	ppt	n/a	5.00	4.39	2.19	<1.00	1.68	1.27	1.47	<1.00	<1.00	
PFBS	2023	ppt	n/a	2.63	2.42	2.32	<1.00	1.99	1.82	1.11	<1.00	<1.00	
PFMBA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
PFEESA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
NFDHA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
4:2 FTS	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	_
PFHxA	2023	ppt	n/a	5.04	3.97	2.50	1.14	1.98	1.36	1.09	<1.00	<1.00	Industrial /
PFPeS	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	manufacturing
HFPO-DA	2023	ppt	n/a	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	training / fire
ADONA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	response sites.
6:2 FTS	2023	ppt	n/a	<4.00	<4.00	<4.00	<4.00	26.1	<4.00	<4.00	<4.00	7.85	
8:2 FTS	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
PFUdA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
9CI-P30NS	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	_
11CL- PF30UdS	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
PFDoA	2023	ppt	n/a	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	

*Please note that the RIDOH Center for Drinking Water Quality has required that concentrations listed for the "Total RI Regulated PFAS (Sum of Six)" include only those of the RI Regulated PFAS analytes that are above or equal to 2.00 PPT. RIDOH Laboratory reporting limits for these analytes is 1.00 PPT. Therefore any concentrations detected for those analytes between 1.00 PPT and 2.00 PPT will not be reflected in the total.

* The analytical result was below the instrument calibration range, but above the methode detection limit. The reported concentration is an estimate

ABBREVIATIONS & DEFINITIONS USED IN TABLES

- MCL Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.
- MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.
- MRDL Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants.
- Maximum Residual Disinfectant Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contamination. MRDLG
- AL Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirement that a water system must follow.
- TT Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
- NTU Nephelometric Turbidity Units
- ppm parts per million, or milligrams per liter (mg/l)
- ppb parts per billion, or micrograms per liter (ug/l)
- ppt parts per trillion, or nanograms per liter (ng/l)

Also, information is available on the Internet:

- n/a Not applicable
- ND No Detect

Newport Water Division

www.epa.gov/safewater

www.cityofnewport.com/water

Environmental Protection Agency

How can you be involved?

Meetings of the Newport City Council begin at 6:30 PM on the second and fourth Wednesday of each month in the Council Chambers, City Hall 43 Broadway, Newport, RI

If you have any questions please contact:

Robert C. Schultz, Jr., Director of Utilities (401) 845-5600

US EPA Hotline (800) 426-4791

RI Department of Health, Drinking Water Quality (401) 222-6867

The data presented in this report is from the most recent testing done in accordance with regulations. The RI Department of Health (RIDOH) allows Newport Water to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.