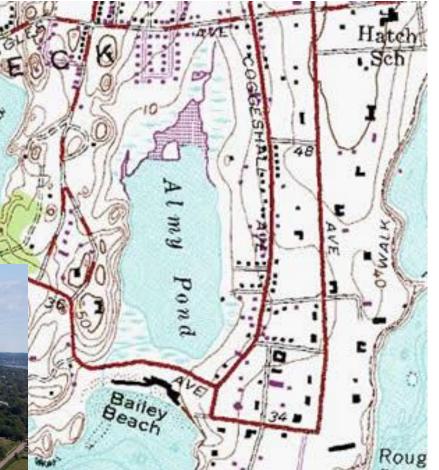
ALMY POND TMDL MANAGEMENT PLAN GREEN INFRASTRUCTURE PILOT TESTING PUBLIC WORKSHOP

Presented by:

City of Newport Department of Utilities And Pare Corporation

November 2, 2016

Presentation Agenda


- Project Overview
- Steps Completed (what have we done to date?)
- On-going Activities (what are we doing now?)
- Next Project Steps (where do we go from here?)

Almy Pond



Project Overview

- Pond Surface Area: 49.8 acres, average 3.9 feet deep
- Pond Watershed Area: 203.7 acres
- Primarily residential land use in the watershed.
 Sprouting Rock Beach Association located directly south.
- Primary sources of in-flow are surface water run-off directly to the Pond and stormwater run-off from City's drainage system (i.e. outfalls).
- Thirteen (13) identified storm drains discharging into Almy Pond

Project Overview (cont...)

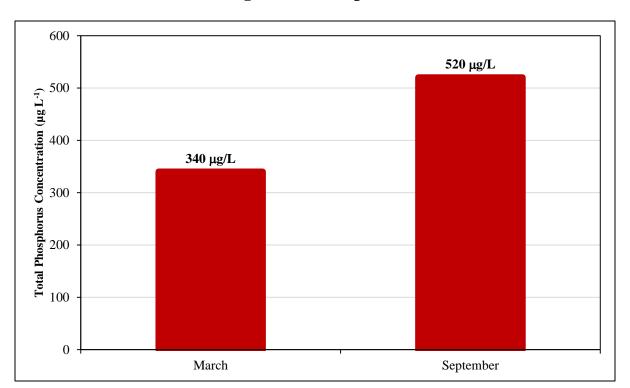
- RIDEM performed a TMDL study to address phosphorus and phosphorus related impairments in nine ponds in Rhode Island, per Section 303(d) of the federal Clean Water Act.
- Almy Pond was reported to have the most severe nutrient impairment of any of the nine ponds studied.
- The most significant impairment factors were thought to be:
 - Stormwater Runoff
 - Internal Cycling
- Lesser impairment factors include:
 - Waterfowl
 - Soil erosion
 - Atmospheric deposition

Steps Completed

- Conducted initial assessment of phosphorus sources
- 2. Developed TMDL Management Plan
- 3. Developed Catch Basin Retrofit Program
- Obtained grant funding to implement Plan
- Began implementation of Plan

Steps Completed (Initial Assessment)

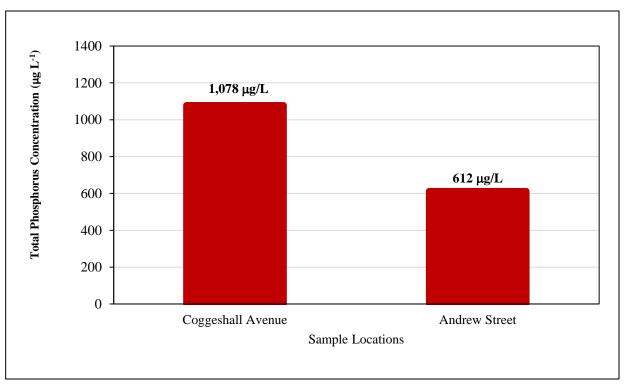
- Between March & September 2013, an assessment was completed of phosphorous sources in the Almy Pond watershed. Assessment included:
 - Shoreline survey of stormwater outfalls
 - Stormwater sampling and analysis
 - Pond surface water and sediment sampling
 - Watershed mapping and characterization



Steps Completed (Initial Assessment)

 Results from 2013 indicate that the <u>primary</u> source of phosphorus is stormwater runoff entering the Pond.

Average total phosphorus concentrations measured in stormwater during March & September 2013



Steps Completed (Initial Assessment)

 Results of a recent sampling round in the pilot study area also reported high concentrations of total phosphorus

Average total phosphorus concentrations measured in stormwater during October 2016

Steps Completed (TMDL Management Plan)

TMDL Management Plan

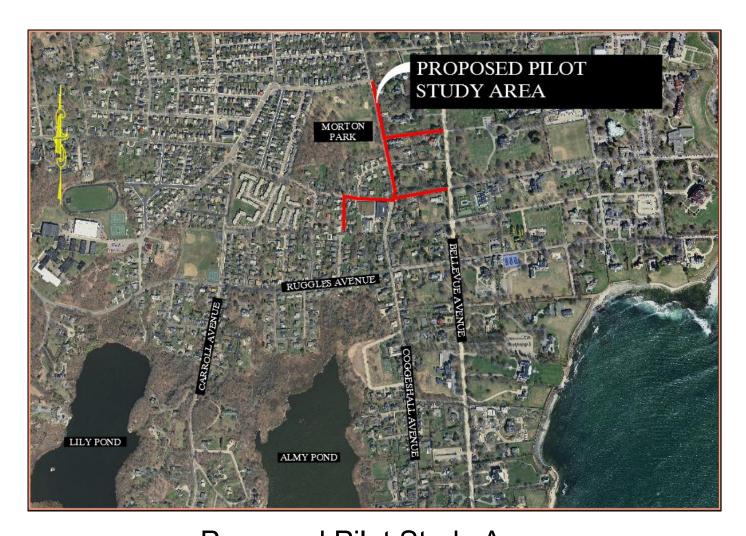
- Developed a four-tier management plan to reduce phosphorus loading to Almy Pond.
- Each tier represents a different approach to phosphorous reduction
 - Tier 1: Public outreach and education program (ongoing)
 - Tier 2: Implement watershed-wide non-structural BMPs (ongoing)
 - Tier 3: Identify and implement watershed-wide structural BMPs and LID practices (3-5 seasons)
 - Tier 4: Develop and implement internal pond sediment management strategies (if necessary)

Steps Completed (Catch Basin Retrofit)

- 187 catch basins were evaluated in the Almy Pond watershed between April and May 2015.
- The City is currently working on replacing and retrofitting catch basins to maximize sediment removal.

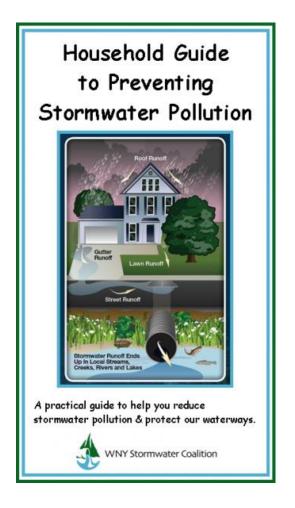
Steps Completed (Grant Funding)

- City of Newport received a \$250,000 Narragansett Bay Watershed Restoration Fund Grant from the RI Department of Environmental Management for pilot testing green infrastructure in the Almy Pond watershed.
- City will provide \$250,000 in matching contributions to the project.
- The grant period runs through January 2018.


Steps Completed (Plan Implementation)

- Developed <u>Pilot Scale</u> phosphorus removal program.
- Three potential pilot areas were identified and then focused down to one.
- Pilot study area is in the northern sub-watershed along Coggeshall Avenue, Bateman Avenue, and Vanderbilt Avenue.

Steps Completed (Plan Implementation)



Ongoing Activities

- Public Outreach and Education Program
 - Public Meetings
 - Household Stormwater Management
 - School Programs/Classroom Education
 - City Website Development

Ongoing Activities

- Pare and the City are working to identify nonstructural BMPs to install in the watershed.
 - Dog Waste Stations
 - "Good Housekeeping" Efforts
 - Catch Basin Cleaning
 - Street Sweeping

Implementing Non-Structural BMPs in the watershed:

Pros

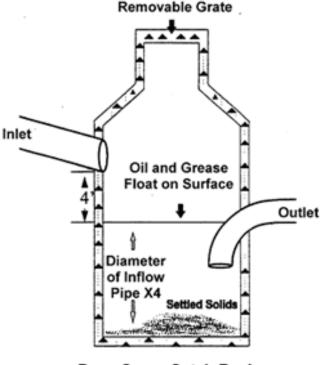
- Simple to incorporate within the watershed
- Relatively inexpensive
- Minor disturbance to the watershed
- Requires only minor maintenance/upkeep.

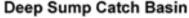
Cons

- Requires long term commitment from the City and the public
- May require a new City ordinance to enforce required level of commitment
- Requires a strong level of public participation to be effective

Pilot Scale Design

- BMP selection includes:
 - Deep Sump Catch Basins
 - Hydrodynamic Separators
 - Adsorption Media Filters
 - Tree Filters
 - Filter Strips
- Why were these selected?
 - Small footprint
 - Easy maintenance
 - Large phosphorus removal
- Developed hydraulic model of pilot study area.

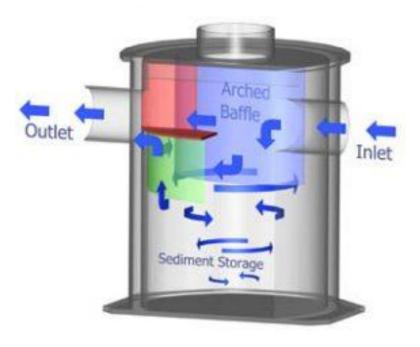



Deep Sump Catch Basins

Pros:

- Small footprint
- Compatible with subsurface storm drain systems
- Provides pretreatment for downstream BMPs
- Easy access for maintenance
- Remove bulk TSS ("particulate-bound phosphorus")

- No ability to control volume of stormwater
- Requires frequent maintenance
- Requires proper disposal of trapped sediment and oil and grease



Hydrodynamic Separators

Pros:

- No moving parts; easy maintenance, minimal repairs
- Good for small sites and retrofits

- High costs for larger units
- Can promote vectors due to standing water
- Need large flows to be effective

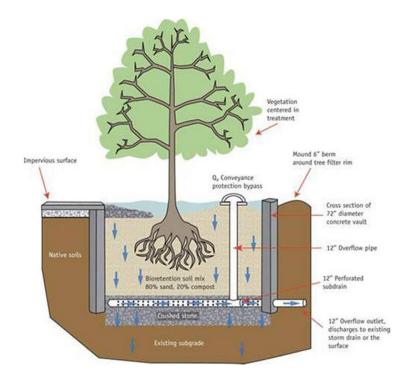
Adsorption Media Filters

Pros:

- High total phosphorus removal
- Small footprint
- Can be custom designed to fit specific needs

- Requires regular maintenance
- Larger units have high costs
- Media requires replacement

Oldcastle Stormwater Solutions Perk Filter™

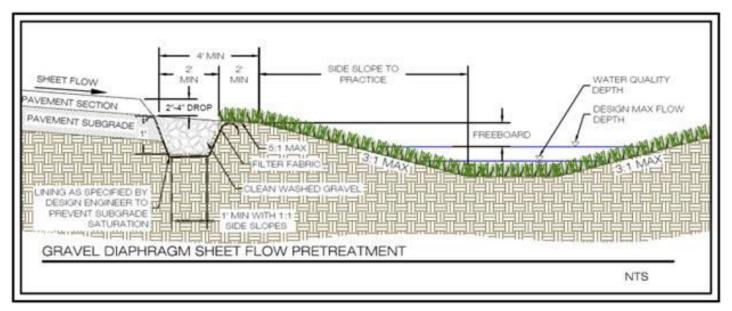


Tree Filters

Pros:

- Effectively manages runoff on a small scale
- Relatively inexpensive
- Good for urban retrofit

- Requires well draining soils that may note be native to the site
- Requires regular maintenance



Filter Strips

- Pros:
 - Low costs
 - Allows for increased infiltration
 - Recharges groundwater
 - Accents natural landscape

- Regular maintenance and more landscaping required
- Only effective if sheet flow can be maintained through the filter strip

Next Project Steps

- Continue stormwater sampling for phosphorus in pilot study area
- Refine hydraulic model utilizing field data obtained from sampling
- Submit 100% design drawings and specifications to RIDEM for review.
- Upon RIDEM approval, construct pilot scale measures
- Post-construction study conducted over a course of 2 years.

Questions and Comments

